让找料更便捷
电子元器件
采购信息平台
生意随身带
随时随地找货
一站式电子元器件
采购平台
半导体行业观察第一站
标签:
摘要: 在 1933 年,美国数学家 Edward Vermilye Huntington (1874-1952) 展示了对布尔代数的如下公理化:交换律:x + y = y + x。结合律:(x + y) + z = x + (y + z)。Huntington等式:n(n(x) + y) + n(n(x) + n(y)) = x。一元函数符号 n 可以读做‘补’。Herbert Robbins 接着摆出
在 1933 年,美国数学家 Edward Vermilye Huntington (1874-1952) 展示了对布尔代数的如下公理化:
交换律:x + y = y + x。
结合律:(x + y) + z = x + (y + z)。
Huntington等式:n(n(x) + y) + n(n(x) + n(y)) = x。
一元函数符号 n 可以读做‘补’。
Herbert Robbins 接着摆出下列问题: Huntington等式能否缩短为下述的等式,并且这个新等式与结合律和交换律一起成为布尔代数的基础? 通过一组叫做 Robbins 代数的公理,问题就变成了:是否所有的 Robbins 代数都是布尔代数?
Robbins 代数的公理化:
交换律: x + y = y + x。
结合律: (x + y) + z = x + (y + z)。
Robbins等式: n(n(x + y") + n(x + n(y))) = x。
这个问题自从 1930 年代一直是公开的,并成为 Alfred Tarski 和他的学生最喜好的问题。
在 1996 年,William McCune 在 Argonne 国家实验室,建造在 Larry Wos、Steve Winker 和 Bob Veroff 的工作之上,肯定的回答了这个长期存在的问题: 所有的 Robbins 代数都是布尔代数。这项工作是使用 McCune 的自动推理程序 EQP 完成的。
型号 | 厂商 | 价格 |
---|---|---|
EPCOS | 爱普科斯 | / |
STM32F103RCT6 | ST | ¥461.23 |
STM32F103C8T6 | ST | ¥84 |
STM32F103VET6 | ST | ¥426.57 |
STM32F103RET6 | ST | ¥780.82 |
STM8S003F3P6 | ST | ¥10.62 |
STM32F103VCT6 | ST | ¥275.84 |
STM32F103CBT6 | ST | ¥130.66 |
STM32F030C8T6 | ST | ¥18.11 |
N76E003AT20 | NUVOTON | ¥9.67 |